Positive solutions for singular elliptic problems

Krzysztof Garbowski and Aleksandra Orpel

We present our results regarding the existence of positive solutions of the following problem

$$
\left\{\begin{array}{c}
\Delta u(x)+f(x, u(x))-b(x)(u(x))^{-\alpha}\|\nabla u(x)\|^{\beta}+g(x) x \cdot \nabla u(x)=0, \tag{1}\\
\lim _{\|x\| \rightarrow \infty} u(x)=0,
\end{array}\right.
$$

where $n>2, R>1,\|x\|:=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \Omega_{R}=\left\{x \in \mathbb{R}^{n},\|x\|>R\right\}, 0<\alpha \leq \beta-\alpha$, which originates from the problem formulated in works of A. Constantin ([1]) without the singular part.

In the first part of the presentation, we consider a problem without a singular part and show the multiplicity of solutions. As our main tool we use the Noussair-Swanson theorem concerning the sub-supersolution ([3]).

In the second part, we show the existence of a classical solution to (1) using both sub-supersolution method ([2]) as well as the unbounded domain approximation method, described, among others in [3] and [4]. Here we use solutions from the first part as supersolutions of (1).

References

[1] A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996) 147-154.
[2] Cui, S., Existence and nonexitence of positive solutions of singular semilinear elliptic boundary value problems, Nonlinear Analysis, 41, (2000), 149-176.
[3] E.S. Noussair, C.A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980) 121-133.
[4] A. Orpel, Multiplicity of positive solutions for singular elliptic problems, Mathematische Nachrichten, (2021) Vol. 294 no. 12

First Author: Krzysztof, Garbowski
Affiliation: Faculty of Mathematics and Computer Science/ University of Lodz 90-238, Poland
e-mail: krzysztof.garbowski@wmii.uni.lodz.pl
Second Author: Aleksandra, Orpel
Affiliation: Faculty of Mathematics and Computer Science/ University of Lodz 90-238, Poland
e-mail: aleksandra.orpel@wmii.uni.lodz.pl

